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Società Italiana di Fisica
Springer-Verlag 2001

Quantum state transfer from light beams to atomic ensembles

L. Vernac, M. Pinarda, and E. Giacobino

Laboratoire Kastler Brossel, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05, France

Received 23 January 2001

Abstract. We show the equivalence between an ensemble of two-level atoms driven by a squeezed vacuum
field, and a harmonic oscillator coupled to a squeezed field. We give the conditions for optimal squeezing
transfer from the field to the atomic ensemble. We show that EPR-type correlations are created between
the atomic ensemble and the incoming field.

PACS. 42.50.Lc Quantum fluctuations, quantum noise, and quantum jumps – 42.50.Dv Nonclassical field
states; squeezed, antibunched, and sub-Poissonian states; operational definitions of the phase of the field;
phase measurements

1 Introduction

For quantum information processing as well as for high
precision measurements in atomic physics, it is highly de-
sirable to be able to engineer the quantum state of ei-
ther individual atoms or atomic ensembles. In order to
realize quantum registers or quantum memories for the
information carried by light, one should be able to map
the quantum state of light onto a material system. To re-
duce the quantum projection noise in measurements, one
can consider putting the atoms in squeezed atomic states
that exhibit reduced fluctuations for the measurement of
interest [1–3]. Atomic ensembles have a variety of superpo-
sition states, that can be manipulated by the interaction
with light fields. In the case of large enough ensembles,
the components of the total polarization of the system,
or of its equivalent collective spin, can be considered as
a continuous variable, in the same way as the quadrature
components of a light field. As was shown by other authors
previously, one can get squeezed atomic states by having
the atomic ensemble interact with a squeezed field [4–6].
The interaction of atoms with a squeezed field has been a
subject of interest for a long time. It has been shown to
cause changes in the spectral line shape [7–9]. Here we will
concentrate on the generation of squeezed atomic states.
We show that this operation can be treated completely
analytically while keeping a full quantum treatment if the
incoming intensity field is extremely weak. Moreover we
show that the resulting atomic state can be correlated at a
quantum level with the light input state, leading to EPR-
type correlations.

We consider a model system made of an ensemble of
2-level atoms in an optical cavity interacting with a very
weak squeezed field. We show that if the mean value of
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the field is zero, and if the photon number in the field
is small i.e. for moderate values of the field squeezing,
the quantum system is fully equivalent to two coupled
harmonic oscillators, an atomic one and a field one. The
quantum Langevin equations, taking into account all the
noise sources can then be solved in a simple analytical way.

We derive the conditions for obtaining optimal squeez-
ing transfer from a field to an atomic ensemble and we
calculate the correlations between the atomic state and
the field input state.

2 Model for atomic fluctuations

We consider a set of two level atoms placed inside a single-
ended optical cavity and driven by a field the frequency
of which is ωL. The intra-cavity field is represented in the
rotating frame by the two dimensionless operators A(t)
and A(t)†: A(t)A(t)† is the number of photons in the cav-
ity at time t. The round-trip time in the cavity is τ , the
amplitude transmission coefficient of the coupling mirror
is tcav, its amplitude reflection coefficient is rcav, with
r2
cav + t2cav = 1. The cavity is assumed to have a high

finesse (tcav � 1). The decay rate of the field in the cav-
ity is κa = (1 − rcav)/τ = T/2τ , where T = t2cav. Let
ωC be the frequency of the cavity resonance which is the
closest to ωL. We define the cavity detuning parameters
∆C = ωC − ωL and φC = ∆C/κa.

The atomic frequency is equal to ω0. We define the
atomic detunings ∆ = ω0 − ωL and δ = ∆/κa. The atom-
field coupling constant is gat = E0d/~, where d is the
atomic dipole, and E0 =

√
~ωL/2ε0Scτ corresponds to

the electric field of one photon in the cavity mode. In this
formula S is the section of the beam. We call γ the atomic
dipole decay rate.
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We define the collective polarization P (t) and the col-
lective population difference Sz(t) as:

P (t) =
N∑
i=1

Si(t) (1)

P †(t) =
N∑
i=1

S†i (t) (2)

Sz(t) =
N∑
i=1

Sz i(t) (3)

where Si(t) and S†i (t) are the lowering and raising opera-
tors for individual atoms in the rotating frame

Si(t) = |gi〉 〈ei| e+iωLt (4)

S†i (t) = |ei〉 〈gi| e−iωLt (5)

and Sz i(t) is given by

Sz i(t) =
1
2

(|ei〉 〈ei| − |gi〉 〈gi|) . (6)

The field inside the cavity is related to the incident field
Ain and to the atomic polarization by:

dA(t)
dt

= −(κa + i∆C) A(t) + igat P (t) +
√

2κa Ain(t).

(7)

The evolution of A†(t) is given by an equation which is
Hermitian conjugate of equation (7). Equation (7) gives
the derivative of the intracavity field as coming from the
recycling of the field of the cavity, from the field emitted by
the atomic polarization and from the incoming field trans-
mitted through the coupling mirror. The fluctuations of
the incoming field can be seen as a Langevin force for the
intracavity field. The evolution of the atomic polarization
and of the populations are given by quantum Langevin
equations, derived from the Bloch equations by adding
the Langevin forces corresponding to the coupling with
the vacuum field surrounding the system

dP (t)
dt

= −(γ + i∆)P (t) − 2igatA(t)Sz(t) + FP (t) (8)

dP †(t)
dt

= −(γ − i∆)P †(t) + 2igatA
†(t)Sz(t) + FP †(t)

(9)
dSz(t)

dt
= −2γ(Sz(t) +N/2)

− igat

(
A†(t)P (t)−A(t)P †(t)

)
+ FSz (t). (10)

The noise operators FP (t), FP †(t) and FSz (t) are charac-
terized by zero averages and by their correlation functions.
The non zero ones are equal to [10]:

〈FP (t)FP † (t
′)〉 = 2γNδ(t− t′) (11)

〈FP (t)FSz (t′)〉 = 2γP0δ(t− t′) (12)

〈FSz(t)FP † (t′)〉 = 2γP ∗0 δ(t− t′) (13)

〈FSz (t)FSz (t′))〉 = 2γ(N/2 + sz0)δ(t− t′) (14)

with the atomic steady state mean values:

P0 = 〈P (t)〉st , P ∗0 =
〈
P †(t)

〉
st
, sz0 = 〈Sz(t)〉st . (15)

We are interested in the quantum fluctuations of the field
operator A and of the atomic operators around their
steady states mean values. The associated operators are
defined by:

δAin(t) = Ain(t)− ain, δA(t) = A(t)− a0 (16)

δP (t) = P (t)− P0, δP
†(t) = P †(t)− P ∗0 ,

δSz(t) = Sz(t)− sz0 (17)

with the two mean field values:

ain = 〈Ain(t)〉st , a0 = 〈A(t)〉st . (18)

In this paper, we consider that the incoming field is a
broadband squeezed vacuum field the mean value of which
is equal to zero (ain = 0). This assumption implies that:

a0 = 0, P0 = P ∗0 = 0. (19)

If the photon number in the squeezed field remain small,
one also has:

sz0 = −N/2. (20)

To obtain equations for the field and atomic fluctua-
tion operators, we linearize equations (7–10). Using equa-
tions (19–20), the equations for the atomic fluctuation op-
erators are very simple. We get:

dδP (t)
dt

= −(γ + i∆)δP (t) + iNgat δA(t) + FP (t) (21)

dδP †(t)
dt

= −(γ − i∆)δP †(t)− iNgat δA
†(t) + FP †(t)

(22)
δSz(t) = 0. (23)

These equations show that the evolution of (P, P †) and
Sz are not coupled any more when ain = 0. Furthermore
equation (23) implies that the atomic state is an eigenstate
of the operator Sz. This property comes from the fact that
the autocorrelation function of the Langevin force FSz(t)
given by equation (14) is equal to zero when sz0 = −N/2.
Consequently the noise spectrum of Sz is equal to zero.

Introducing the quantities p = P/
√
N and p† =

P †/
√
N we obtain the set of equations:

dδA(t)
dt

= −(κa + i∆C)δA(t)

+ igat

√
Nδp(t) +

√
2κaδAin(t) (24)

dδA†(t)
dt

= −(κa − i∆C)δA†(t)

− igat

√
Nδp†(t) +

√
2κaδA

†
in(t) (25)

dδp(t)
dt

= −(γ + i∆)δp(t)

+ igat

√
NδA(t) + FP (t)/

√
N (26)

dδp†(t)
dt

= −(γ − i∆)δp†(t)

− igat

√
NδA†(t) + FP †(t)/

√
N. (27)
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The atomic fluctuations can be easily deduced from this
system of four coupled equations. Before giving the result,
we will study the quantum fluctuations of a harmonic os-
cillator placed in the same conditions and show that the
two systems have a similar behavior.

3 Model for harmonic oscillator fluctuations

We consider a harmonic oscillator described by the oper-
ators B(t) and B†(t). This harmonic oscillator is placed
inside the cavity defined in the previous section. The free
evolution frequency of B(t) is equal to ωb. The harmonic
oscillator is represented in the rotating frame by the op-
erator b(t) = B(t)eiωLt and b†(t) = B†(t)e−iωLt. We define
the detunings ∆b = ωb − ωL and φb = ∆b/κa. We call
κb the decay rate of b(t) and b†(t), due to the coupling
with a reservoir in the vacuum state [11]. The coupling
between the harmonic oscillator and the field is given by
the Hamiltonian HI = ~g(A†b + b†A). The Heisenberg
evolution equations of the system operators are:

db(t)
dt

= −(κb + i∆b)b(t) + igA(t) +
√

2κbbin(t) (28)

db†(t)
dt

= −(κb − i∆b)b†(t)− igA†(t) +
√

2κbb
†

in(t) (29)

dA(t)
dt

= −(κa + i∆C)A(t) + igb(t) +
√

2κaAin(t) (30)

dA†(t)
dt

= −(κa − i∆C)A†(t)− igb†(t) +
√

2κaA
†

in(t).

(31)

In these equations the source terms proportional to Ain(t),
A
†

in(t) and bin(t), b†in(t) correspond to the coupling of the
field and of the harmonic oscillator with their respective
baths.

We introduce the harmonic oscillator mean values b =
〈b(t)〉st and bin = 〈bin(t)〉st. We assume that the mean
value of bin(t) is equal to zero (bin(t) = δbin(t)). The mean
values a and b can be easily computed from equations (28–
31) without the fluctuating terms.

The steady state of this system is:

b =
ig
√

2κaain

g2 + (κa + i∆C)(κb + i∆b)
,

a =
(κb + i∆b)

√
2κaain

g2 + (κa + i∆C)(κb + i∆b)
· (32)

The mean value of the reflected field is deduced from the
preceding equation by using the input-output relations for
the field:

aout = rcavain − tcava (33)

and we obtain:

aout =
−g2 + (κa − i∆C) (κb + i∆b)
g2 + (κa + i∆C)(κb + i∆b)

ain. (34)
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Fig. 1. Reflection coefficient R of a Fabry Perot cavity con-
taining a harmonic oscillator function of the normalized de-
tuning φ between field and cavity for ρ = 0.1. In (a) η = 0.2,
the coupling between the harmonic oscillator and the field is
weak while in (b) η = 10, corresponding to the strong coupling
regime.

Defining the coupling parameter η = g/κa and the ra-
tio between the dampings ρ = κb/κa, we can rewrite the
preceding equation as:

R =
∣∣∣∣aout

ain

∣∣∣∣2 =
∣∣∣∣−η2 + (1− iφC) (ρ+ iφb)
η2 + (1 + iφC)(ρ+ iφb)

∣∣∣∣2 · (35)

The shape of the reflected field intensity as a function of
φ (φ = φC = φb) depends on the value of η, with only
one resonance at φ = 0 if the coupling is weak (η < 1, ρ),
or two resonances around φ = ±

√
η2 − (1 + ρ2)/2 if the

strong coupling regime [12] is achieved (η > 1, ρ). Figure 1
gives the variation of R as a function of φ with ρ = 0.1,
for increasing values of η. For 0 < η < 1, the reflected
intensity has a dip around φ = 0 (see Fig. 1a). This dip is
due to an energy transfer from the field to the harmonic
oscillator, and when η increases this hole broadens. For
η > 1 the reflected intensity has two minima, which are
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obtained for φ = ±η when η � 1 (see Fig. 1b which
corresponds to η = 10).

Now, we are going to compute the fluctuations of the
field and harmonic oscillator operators. We are interested
in the quantum fluctuations of the operatorsA (t) and b (t)
around their steady state mean values. We define:

δb (t) = b (t)− b. (36)

Equations (28–31) give the following equations for the
fluctuations:

dδb(t)
dt

= −(κb + i∆b)δb(t) + igδA(t) +
√

2κbδbin(t)

(37)

dδb†(t)
dt

= −(κb − i∆b)δb†(t)− igδA†(t) +
√

2κbδb
†

in(t)

(38)

dδA(t)
dt

= −(κa + i∆C)δA(t) + igδb(t) +
√

2κaδAin(t)

(39)

dδA†(t)
dt

= −(κa − i∆C)δA†(t)− igδb†(t) +
√

2κaδA
†

in(t).

(40)

Let us notice that these equations are valid even for
large values of the mean field and of the photon num-
bers, on contrast to equations (21–23). We see that equa-
tions (24–27) are identical to equations (37–40) with the
equivalences:

p↔ b, gat

√
N ↔ g, ∆↔ ∆b and δbin(t)↔ FP (t)√

N
·

(41)

Consequently, the same results will be obtained for the
variances of the atomic polarization p with the 2-level
atom model and for the variances of the annihilation op-
erator b with the harmonic oscillator model.

To solve the system of equations, it is useful to work in
Fourier space. For any operator O(t) in the rotating frame
we define the Fourier transform O(ω) as:

O(ω) =
∫
O(t)eiωtdt (42)

O†(ω) =
∫
O†(t)eiωtdt. (43)

The Fourier components of the fluctuation operators are
then given by:

(−iω + κb + i∆b)δb(ω) = igδA(ω) +
√

2κbδbin(ω)
(44)

(−iω + κb − i∆b)δb†(ω) = −igδA†(ω) +
√

2κbδb
†
in(ω)

(45)

(−iω + κa + i∆C)δA(ω) = igδb(ω) +
√

2κaδAin(ω) (46)

(−iω + κa − i∆C)δA†(ω) = −igδb†(ω) +
√

2κaδA
†

in(ω).
(47)

This system of coupled equations can easily be solved by
introducing the quantities:

Ja(ω) =
ig
√

2κa

g2 + (−iω + κa + i∆C)(−iω + κb + i∆b)
(48)

Jb(ω) =
√

2κb (−iω + κa + i∆C)
g2 + (−iω + κa + i∆C)(−iω + κb + i∆b)

· (49)

We obtain:

δb(ω) = Ja(ω)δAin(ω) + Jb(ω)δbin(ω) (50)

δb†(ω) = (Ja(−ω))∗δA
†

in(ω) + (Jb(−ω))∗δb†in(ω). (51)

Using the parameters η and ρ we can rewrite equa-
tions (48, 49) with the normalized frequency Ω = ω/κa

as:

Ja(Ω) =
iη
√

2√
κaD(Ω)

(52)

Jb(Ω) =
√

2ρ(1 + iφC − iΩ)√
κaD(Ω)

(53)

with:

D(Ω) = η2 + (1 + iφC − iΩ)(ρ+ iφb − iΩ). (54)

To calculate the fluctuations we write equations (50, 51)
in a matrix form. We introduce the 2-dimensional vectors
|δb(ω)], |δbin(ω)] and |δAin(ω)]:

|δb(ω)] =

∣∣∣∣∣ δb(ω)
δb†(ω)

]
, |δbin(ω)] =

∣∣∣∣∣ δbin(ω)
δb†in(ω)

]
,

|δAin(ω)] =

∣∣∣∣∣ δAin(ω)
δA†in(ω)

]
(55)

and their adjoints (for example [δb(ω)| = |δb(ω)]† =[
δb†(−ω), δb(−ω)

∣∣). Then equations (37–40) can be writ-
ten under the form:

|δb(ω)] = [Ja(ω)] |δAin(ω)] + [Jb(ω)] |δbin(ω)] (56)

where the 2 × 2 matrices [Ja(ω)] and [Jb(ω)] are respec-
tively equal to:

[Ja(ω)] =

[
Ja(ω) 0

0 J∗a (−ω)

]
(57)

and:

[Jb(ω)] =

[
Jb(ω) 0

0 J∗b(−ω)

]
. (58)

The covariance matrices [VAin(ω)] of the incoming field
and [Vbin(ω)] of the harmonic oscillator bath are de-
fined as:

〈|δAin(ω)] [δAin(ω′)|〉 = 2π [VAin(ω)] δ (ω − ω′) (59)

〈|δbin(ω)] [δbin(ω′)|〉 = 2π [Vbin(ω)] δ (ω − ω′) . (60)
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The fluctuations of the harmonic oscillator bath are taken
to be at the standard quantum level, and the matrix
[Vbin(ω)] is consequently equal to [13]:

[Vbin(ω)] =

[
1 0
0 0

]
. (61)

For a broadband squeezed field, the field fluctuations are
given by [14]:

[VAin(ω)] =

[
cosh2(r) sinh(2r)/2

sinh(2r)/2 sinh2(r)

]
. (62)

The quadrature operators of the incoming field are de-
fined as:

Êin,ϕ(t) = Ain(t)eiϕ +A†in(t)e−iϕ. (63)

The noise spectrum of Êin,ϕ(t) will be denoted SÊin,ϕ
(ω):

〈δÊin,ϕ(ω)δÊin,ϕ(ω′)〉 = 2πSÊin,ϕ
(ω)δ (ω + ω′) (64)

and is obtained from the matrix elements of [VAin(ω)]:

SÊin,ϕ
(ω)=VAin1,1(ω)+VAin2,2(ω)+2 Re(e2iϕVAin1,2(ω)).

(65)

In the case of the broadband squeezed field equa-
tions (62, 65) show that the quadrature with the minimal
noise spectrum is obtained for ϕ = π/2:

SÊin,ϕ=π
2

(ω) = e−2r. (66)

The parameter r gives the amount of squeezing, equal to
e−2r. The quadrature corresponding to ϕ = 0 is the nois-
iest one:

SÊin,ϕ=0
(ω) = e2r. (67)

When r = 0 the fluctuations of the standard quantum
limit are recovered.

We define the covariance matrix [Sb(ω)] of the har-
monic oscillator as:

〈|δb(ω)] [δb(ω′)|〉 = 2π [Sb(ω)] δ (ω − ω′) . (68)

Using equations (56, 59, 60), we obtain the following ex-
pression for [Sb(ω)]:

[Sb(ω)] = [Ja(ω)] [VAin(ω)] [Ja(ω)]hc

+ [Jb(ω)] [Vbin(ω)] [Jb(ω)]hc (69)

where [Ja(ω)]hc (resp. [Jb(ω)]hc) is the Hermitian conju-
gate matrix of [Ja(ω)] (resp. [Jb(ω)]).

Using equations (61, 62), and the expressions we have
obtained for [Ja(ω)]hc and [Jb(ω)]hc, we can rewrite equa-
tion (69) as:

[Sb(ω)] =[
cosh2(r) |Ja(ω)|2 + |Jb(ω)|2 Ja(ω)Ja(−ω) sinh(2r)/2
J∗a (ω)J∗a (−ω) sinh(2r)/2 sinh2(r) |Ja(−ω)|2

]
.

(70)

The quadrature operators of the harmonic oscillator are
defined by:

Yϕ(t) = b(t)eiϕ + b†(t)e−iϕ. (71)

The corresponding noise spectrum SYϕ(ω) is calculated
using equation (68), and can then be evaluated with the
matrix elements of [Sb(ω)]:

SYϕ(ω) = Sb1,1(ω) + Sb2,2(ω) + 2 Re(e2iϕSb1,2(ω)). (72)

Using equation (70), we obtain:

SYϕ(ω) = cosh2(r) |Ja(ω)|2 +sinh2(r) |Ja(−ω)|2 + |Jb(ω)|2

+ Re{e2iϕ sinh(2r)Ja(ω)Ja(−ω)}. (73)

When the incoming field is in a coherent state (r = 0), the
noise spectra of the quadratures of the harmonic oscillator
do not depend on ϕ and are equal to:

SYϕ(ω)coherent = |Ja(ω)|2 + |Jb(ω)|2 . (74)

The variance of any operatorO is defined by ∆O = 〈δO2〉.
Then the variance ∆Yϕ of the ϕ quadrature of the har-
monic oscillator is given by:

∆Yϕ =
1

2π

∫
dω SYϕ(ω). (75)

Squeezing is obtained when one of the quadrature opera-
tors has a variance smaller than one. Considering the min-
imal variance ∆Ymin, the condition for having squeezing
is then ∆Ymin < 1.

Using equations (73, 75), we find the value of ∆Ymin

when the incoming field is a broadband squeezed field:

∆Ymin = Ib + cosh(2r)Ia − sinh(2r)Ic. (76)

We have introduced the following integrals:

Ia =
1

2π

∫
dω |Ja(ω)|2 (77)

Ib =
1

2π

∫
dω |Jb(ω)|2 (78)

Ic =
1

2π

∣∣∣∣∫ dω Ja(ω)Ja(−ω)
∣∣∣∣ . (79)

When the incoming field is in a coherent state (r = 0),
the harmonic oscillator is also in a coherent state, and
the variances of all the quadrature components are equal
to one, as in the case of the ground state. This property
implies that:

Ia + Ib = 1. (80)

When the incoming field is squeezed, the harmonic oscil-
lator can be squeezed as well if the integral Ic is large
enough. Ic satisfies the following inequalities:

Ic ≤
1

2π

∫
dω |Ja(ω)Ja(−ω)| ≤ 1

2π

∫
dω |Ja(ω)|2 = Ia

(81)
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and consequently:

∆Ymin ≥ Ib + (cosh(2r)− sinh(2r))Ia = Ib + Iae−2r.
(82)

The equality between Ic and Ia is obtained when the argu-
ment of (Ja(ω)Ja(−ω)) is independent of ω, and |Ja(ω)| =
|Ja(−ω)|. This condition is verified if:

∆C = ∆b = 0 (83)

or if:

∆C = −∆b, κa = κb. (84)

The second condition, given by (84), is of minor inter-
est since it corresponds to a squeezing transfer from the
field to the atoms limited to 50% as we will see below.
In the following we will only consider the first condition,
given by (83). When (83) is fulfilled, Ja(−ω) = −Ja(ω)∗,
and (73) becomes:

SYϕ(ω)∆C=∆b=0 =

|Jb(ω)|2 + |Ja(ω)|2 (cosh(2r) − sinh(2r) cos(2ϕ)). (85)

The quadrature component corresponding to ϕ = 0 has
the minimal noise spectrum for all the values of the noise
frequency:

SY ϕ=0(ω)(∆C=∆b=0) = e−2r |Ja(ω)|2 + |Jb(ω)|2 (86)

and consequently it has the minimal variance:

∆Ymin (∆C=∆b=0) = ∆Yϕ=0 = Ib + Iae−2r > e−2r. (87)

The latter inequality is due to equation (80). It means
that the squeezing of the harmonic oscillator is smaller
than the squeezing of the field, due to its coupling with a
reservoir. Then equations (83, 84) can be seen as optimal
squeezing transfer conditions from field to the harmonic
oscillator.

When one of this squeezing transfer conditions is ver-
ified, the integrals Ib and Ia can be easily calculated, and
in the case of equation (83):

Ia(∆C=∆b=0) = η2 1
1 + ρ

1
η2 + ρ

(88)

Ib(∆C=∆b=0) =
ρ

1 + ρ

(
1 +

1
η2 + ρ

)
. (89)

Consequently the value of ∆Ymin is equal to:

∆Ymin (∆C=∆b=0) = 1 +
(
e−2r − 1

) η2

(1 + ρ) (η2 + ρ)
·

(90)

To have ∆Ymin as small as possible, one needs η2 � ρ.
Then (90) writes:

∆Ymin (∆C=∆b=0, η2�ρ) = 1 +

(
e−2r − 1

)
1 + ρ

· (91)

For a perfectly squeezed field (r →∞), we get:

∆Ymin (∆C=∆b=0, r→∞, η2�ρ) =
ρ

1 + ρ
=

κb

κb + κa
· (92)

The best squeezing transfer then corresponds to ρ � 1,
which means that the relaxation rate of the harmonic os-
cillator, κb, is much smaller than that of the cavity, κa.
We would obtain the same expression for ∆C = −∆b,
κa = κb, η2 � ρ which shows that in this case the squeez-
ing of the harmonic oscillator is limited to 50%.

4 Spin squeezing

In the same way as a squeezed state of the electromag-
netic field is defined by comparison to the coherent state,
a squeezed spin state will be defined as having fluctuations
in one component lower than the one of a coherent spin
state [3]. Since the noise spectrum of a coherent spin state
is not white, contrary to the one of a freely propagating co-
herent light field, one has to compare the variances of the
considered spin components to the variances of the com-
ponents of a coherent spin state. We introduce Sx and Sy:

Sx =
P + P †

2
, Sy =

P − P †
2i

· (93)

Due to the commutation relations of an angular momen-
tum [Sj , Sk] = iSl, where j, k, l = x, y, z, the variances of
two orthogonal components Su and Sv of the spin in the
x, y-plane obey a Heisenberg inequality:√

∆Su∆Sv ≤
|〈Sz〉|

2
· (94)

Since the field has a zero mean value, the mean value of the
spin is aligned with the z-axis, and consequently there is
spin squeezing if one of the spin components in the (x, y)-
plane has a variance smaller than the reference given by
the Heisenberg inequality (|〈Sz〉| /2) [3,2], which is equal
to N/4 according to equation (19). We call ∆Smin the
minimal variance in the (x, y)-plane normalized to N/4
which is found for some direction u and we compare its
value with 1.

In order to evaluate ∆Smin in the case of interac-
tion between atoms and zero mean field value, we use
the equivalence given by equation (41). We see that we
will obtain the same value for the spin components in
the (x, y)-plane as the one we obtained for the quadra-
ture components of the harmonic oscillator in Section 2.
In particular, we obtain the equality:

∆Smin = ∆Ymin. (95)

As mentioned above this equivalence is valid when the
photon number in the squeezed incoming field is small.
The model also allows to show that the interaction of the
spin with a squeezed field also causes changes in the spec-
tral line shape of the atoms. This effect was studied in
detail in [9,15], for the case of the bad cavity limit.
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Fig. 2. Noise spectra of harmonic oscillator quadratures versus the normalized frequency Ω in the conditions of good squeezing
transfer for ρ = 0.1, η = 10. In (a) the incoming field is in a coherent state, and all the quadrature have the same spectra
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Fig. 3. Evolution of the minimal variance
∆Ymin of the quadrature of the harmonic
oscillator with the squeezing rate of the in-
coming field RAin for different values of the
coupling constant η in the optimal squeez-
ing transfer regime.

In order to minimize ∆Smin, we have to take ∆ =
∆C = 0 according to (83). Since ain = a = 0 for a squeezed
vacuum state, the choice of ωL corresponds to the center
of the squeezing broadband. Introducing the parameter
ρat = γ/κa, we deduce from equations (90, 41) that:

∆Smin (∆=∆C=0) = 1 +
(
e−2r − 1

) 2C
(2C + 1) (1 + ρat)

·

(96)

C is the cooperativity parameter characterizing the
strength of the coupling between atoms and field:

C =
Ng2

at

2κaγ
· (97)

For a large number of atoms (C � 1) we obtain:

∆Smin(∆=∆C=0, C�1) = 1 +
1

1 + ρat
(e−2r − 1). (98)

This equality is the equivalent of the one obtained in (91)
for the harmonic oscillator. It shows that the spin squeez-
ing is deteriorated by the coupling of the atoms with the
vacuum field the rate of which is γ. But the spin noise

can be made very small if γ is much smaller than κa,
which characterizes the coupling of the atoms with the
cavity mode: significant squeezing transfer corresponds to
ρat � 1.

5 Results for the squeezing transfer

We discuss the noise reduction in the case of the harmonic
oscillator, which is valid for any value of the squeezing rate
of the incoming field. When ∆b = ∆C = 0, the noise spec-
trum of the minimal quadrature of the harmonic oscillator
is obtained from equation (86). If η is large enough, the
noise spectrum exhibits two peaks, occurring at two op-
posite frequencies ±ωc. When η � 1, ρ, 0we have ωc ≈ g.
In Figure 2 we have plotted the noise spectra: Figure 2a
shows the noise spectrum of any quadrature of the har-
monic oscillator in the coherent state (r = 0), and Fig-
ure 2b the noise spectrum of the minimal quadrature
when the amount of squeezing of the incoming field is
80% (e−2r = 0.2). The value of ρ is 0.1 and η is equal to
10, which corresponds to ωc/κa = Ωc = 10.

In Figure 3 we show the evolution of the minimal vari-
ance of the harmonic oscillator with RAin the squeezing
rate of the incoming field (RAin = 1−e−2r) for several val-
ues of η in the squeezing transfer regime (∆C = ∆b = 0).
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Fig. 4. Evolution of the minimal variance
∆Ymin with the squeezing rate of the in-
coming field RAin for different values of the
coupling constant η when the conditions for
optimal squeezing transfer are not fulfilled
(∆C = 0 and ∆b = 1).

These curves are plotted for ρ = 0.1. The limit 1/11, cor-
responding to perfect field squeezing and high value of η,
is given by equation (92).

In Figure 4 the conditions for optimal squeezing trans-
fer are not fulfilled: we have ∆C = 0 and ∆b = 1. We
see that the squeezing decreases as the field squeezing
becomes large, and that the excess noise goes to infinity
for perfect squeezed field: when the integral Ic is smaller
than integral Ia, high values of field squeezing degrade the
squeezing of the harmonic oscillator. The minimal quadra-
ture gets a contribution from the excess noise quadrature
of the field, and consequently its variance tends to infinity
when the field is perfectly squeezed.

6 Fluctuations of the reflected field

We now compute the noise spectra of the field reflected by
the cavity when an incoming squeezed field interacts with
a harmonic oscillator. We will concentrate on the case of
the optimal squeezing transfer given by (83). In the same
way as we have calculated the fluctuations of the harmonic
oscillator in Section 2, we break down the fluctuations of
the reflected field into the fluctuations of the incoming
field and of the intracavity bath, because these fluctua-
tions are uncorrelated. From equation (46), one deduces
the expression of the intracavity field fluctuations:

δA(ω) =
ig

−iω + κa + i∆C
δb(ω)

+
√

2κa

−iω + κa + i∆C
δAin(ω). (99)

Using equations (33, 50) we easily obtain the reflected field
fluctuations δAout(ω) for ∆C = ∆b = 0:

δAout(ω)∆C=∆b=0 = Ka(ω)δAin(ω) +Kb(ω)δbin(ω)
(100)

with:

Ka(ω) =
−g2 + (iω + κa) (−iω + κb)
g2 + (−iω + κa)(−iω + κb)

(101)

Kb(ω) =
2ig
√
κaκb

g2 + (−iω + κa)(−iω + κb)
· (102)

δA†out(ω) is given by the Hermitian conjugate of this
equation, and we thus obtain the following matrix form
equality:

|δAout(ω)]∆C=∆b=0 = [Ka(ω)] |δAin(ω)]

+ [Kb(ω)] |δbin(ω)] (103)

with:

|δAout(ω)] =

∣∣∣∣∣ δAout(ω)
δA†out(ω)

]
, [Ka(ω)] =

[
Ka(ω) 0

0 Ka(ω)

]
,

[Kb(ω)] =

[
Kb(ω) 0

0 −Kb(ω)

]
. (104)

From equation (103) we deduce the value of the covariance
matrix of the reflected field:

[VAout(ω)]∆C=∆b=0 = |Ka(ω)|2 [VAin(ω)]

+ |Kb(ω)|2 [Vbin(ω)] . (105)

For the value of the covariance matrix of the squeezed field
given by equation (62), we finally get:

[VAout(ω)]∆C=∆b=0 =[
|Ka(ω)|2 cosh2(r) + |Kb(ω)|2 |Ka(ω)|2 sinh(2r)/2

|Ka(ω)|2 sinh(2r)/2 |Ka(ω)|2 sinh2(r)

]
.

(106)

The quadrature components Êout,ϕ of the reflected field
are defined in the same way as the ones of the incom-
ing field (see Eq. (63)). From equation (106) we see that
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the quadrature component corresponding to ϕ = π/2 has
the minimal noise spectrum for all values of the noise fre-
quency, given by:

SÊout,ϕ=π/2
(ω)∆C=∆b=0 = |Ka(ω)|2 e−2r + |Kb(ω)|2 .

(107)

The quadrature component corresponding to ϕ = 0 has
the maximal noise spectrum for all frequencies:

SÊout,ϕ=0
(ω)∆C=∆b=0 = |Ka(ω)|2 e2r + |Kb(ω)|2 . (108)

We note that we have the following equality:

|Ka(ω)|2 + |Kb(ω)|2 = 1. (109)

These results are also valid for the case of a field going
out of a cavity containing atoms when the incoming field
is in a squeezed vacuum state.

From equations (107–109) we deduce that if the in-
coming field is in a coherent state (r = 0), the noise
spectra of all the quadratures of the reflected field, which
are the same, are equal to 1 for any value of the analysis
frequency ω: the reflected field is in a coherent state as
well. In Figure 5 we show for an incoming squeezed field
(e−2r = 0.2) the minimal (Fig. 5a) and maximal (Fig. 5b)
noise spectra of the reflected field for ρ = 0.1 and η = 10
in the case of optimal squeezing transfer, ∆C = ∆b = 0.
We see that these spectra have the same constant values
as the ones of the incoming field, equal respectively to
0.2 and 5, except near the two coupling frequencies ±Ωc.
Around these frequencies the field fluctuations enter the
cavity and squeezing or excess noise are transferred in part
to the harmonic oscillator. The squeezed quadrature goes
out with additional noise, while the antisqueezed quadra-
ture goes out with reduced fluctuations.

7 Correlations between atoms and incoming
field

In this part we first show that EPR-type correlations ex-
ist between the quadratures of an incoming squeezed field
and the quadratures of the harmonic oscillator with which
the field interacts. We will be interested in the extremal
quadratures. We have seen in Section 3 that the mini-
mal noise quadratures are Êin, ϕ=π

2
and Yϕ=0, while the

maximal noise quadratures are Êin, ϕ=0 and Yϕ=π
2
. Using

equations (50, 51), and the equalities Ja(ω) = −Ja(−ω)∗,
Jb(ω) = Jb(−ω)∗ when ∆C = ∆b = 0, one obtains easily
the following relations:

δYϕ=0(ω) = −iJa(ω)δÊin, ϕ=π
2
(ω)

+ Jb(ω)(δbin(ω) + δb†in(ω)) (110)

δYϕ=π
2
(ω) = iJa(ω)δÊin, ϕ=0(ω)

+ iJb(ω)(δbin(ω)− δb†in(ω)). (111)
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Fig. 5. Noise spectra of the extremal quadrature components
of the reflected field in the optimal squeezing transfer regime,
with ρ = 0.1, η = 10, e−2r = 0.2. The minimal noise spectrum
is plotted in (a) while the maximal noise spectrum is plotted
in (b).

We define the normalized correlation function between two
operators O and O′, the noise spectra of which are respec-
tively SO(ω) and SO′(ω), from the noise spectra of the sum
O +O′, SO+O′(ω):

CO,O′(ω) =
SO+O′(ω)− SO(ω)− SO′(ω)

2
√
SO(ω)SO′(ω)

· (112)

By calculating SO+O′(ω) we show that CO,O′(ω) is related
to the statistical average of δO(ω)δO′(ω′) by the relation

Re(〈δO(ω)δO′(ω′)〉) =

2πδ(ω + ω′)
√
SO(ω)SO′(ω) CO,O′(ω) (113)

and obeys the inequality: −1 ≤ CO,O′(ω) ≤ 1, with
perfect correlation when CO,O′(ω) = 1, perfect anticor-
relation when CO,O′(ω) = −1, and no correlation for
CO,O′(ω) = 0.

Since incoming field and harmonic oscillator bath are
uncorrelated, we derive from equations (110, 111) the four
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correlation functions:

C0,π2
(Ω) = CYϕ=0,Êin, ϕ=π

2
(Ω) =

Im(Ja(ω))√
|Ja(ω)|2 + e2r |Jb(ω)|2

=
η2 + ρ−Ω2

|D(Ω)|
1√

1 + ρ
η2 e2r(1 +Ω2)

(114)

Cπ
2 ,0

(Ω)=CYϕ=π
2
,Êin, ϕ=0

(Ω)=
− Im(Ja(ω))√

|Ja(ω)|2 +e−2r |Jb(ω)|2

=
η2 + ρ−Ω2

|D(Ω)|
−1√

1 + ρ
η2 e−2r(1 +Ω2)

(115)

C0,0(Ω) = CYϕ=0,Êin, ϕ=0
(Ω) =

Re(Ja(ω))√
|Ja(ω)|2 + e2r |Jb(ω)|2

=
(ρ+ 1)Ω
|D(Ω)|

1√
1 + ρ

η2 e2r(1 +Ω2)
(116)

Cπ
2 ,
π
2
(Ω)=CYϕ= π

2
,Êin, ϕ=π

2
(Ω)=

−Re(Ja(ω))√
|Ja(ω)|2 +e−2r |Jb(ω)|2

=
(ρ+ 1)Ω
|D(Ω)|

−1√
1 + ρ

η2 e−2r(1 +Ω2)
(117)

where Ω = ω/κa and D(Ω) is given by (54). As previously
we obtain the same results for atoms interacting with a
squeezed vacuum field.

The four corresponding correlation functions C0,π2
(Ω),

Cπ
2 ,0

(Ω), C0,0(Ω) and Cπ
2 ,
π
2
(Ω) are plotted in Figure 6 for

ρ = 0.1, η = 10 and e−2r = 0.2.
We see that the squeezed quadratures of the atomic

system and field, Yϕ=0 and Êin, ϕ=π
2
, are well correlated or

anticorrelated outside the resonance peaks at Ω = ±Ωc =
±10. In the vicinity of the resonance peaks, the correla-
tion goes to zero (see Fig. 6a). The same is true for the
two antisqueezed quadratures (see Fig. 6b). On the other
hand, the correlations either between Yϕ=0 and Êin, ϕ=0,

or Yϕ=π/2 and Êin, ϕ=π/2, are maximum close to the res-
onance frequencies and zero for other frequencies (see re-
spectively Fig. 6c and Fig. 6d).

From equations (114–117), we can compute the in-
ferred spectra of the incoming field when the one of the
harmonic oscillator is known [16]:

Sinf
Êin, ϕ=0

(Ω) = SÊin, ϕ=0
(1− Ci, 0(Ω)2)

= e2r(1− Ci, 0(Ω)2) (118)

Sinf
Êin, ϕ=π/2

(Ω) = SÊin, ϕ=π/2
(1− Cj, π/2(Ω)2)

= e−2r(1− Cj, π/2(Ω)2) (119)

where we can use either (i = 0, j = π/2) or (i = π/2,
j = 0) to infer the field spectra.
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Fig. 6. The four correlation functions between the squeezed
quadrature and antisqueezed quadrature of the harmonic os-
cillator and squeezed and antisqueezed quadratures of the in-
coming field for ∆C = ∆b = 0, ρ = 0.1, η = 10, and 80% of
squeezing of the incoming field.
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Fig. 7. Products of the inferred spectra of the incoming field
quadratures versus the normalized frequency Ω for∆C = ∆b =
0, ρ = 0.1 and η = 10. For Π1(Ω) plotted in (a) the squeezed
and antisqueezed quadratures of the incoming field are respec-
tively inferred from the squeezed and antisqueezed quadra-
ture of the harmonic oscillator. For Π2(Ω) plotted in (b) they
are respectively inferred from the antisqueezed and squeezed
quadrature.

Figure 7 shows for ρ = 0.1, η = 10 and e−2r = 0.2 the
products Π1(Ω) and Π2(Ω), with:

Π1(Ω) = Sinf
Êin, ϕ=0

(Ω)Sinf
Êin, ϕ=π/2

(Ω)(i=π/2, j=0)

= (1− Cπ/2,0(Ω)2)(1− C0,π/2(Ω)2) (120)

Π2(Ω) = Sinf
Êin, ϕ=0

(Ω)Sinf
Êin, ϕ=π/2

(Ω)(i=0, j=π/2)

= (1− C0,0(Ω)2)(1− Cπ/2, π/2(Ω)2). (121)

It can be seen that Π1(Ω) goes below one around Ω = 0
and for frequencies larger than Ωc or smaller than −Ωc,
while Π2(Ω) goes below one around Ω = ±Ωc. This
shows that measurements on two conjugate quadratures
of the harmonic oscillator allows to infer the incom-
ing field quadratures with accuracies apparently violating

Heisenberg inequalities which corresponds to EPR-type
correlations.

8 Conclusion

We have shown that an ensemble of two level atoms driven
by a squeezed vacuum field with a low photon number (i.e.
moderate squeezing) is equivalent to a harmonic oscilla-
tor, and consequently can be treated fully analytically.
The squeezing transfer from the field to the atoms can be
very good at the condition that the coupling of the atomic
system to its reservoir is very small, and the coupling be-
tween the field and the atomic system is large (g2 � κaκb,
and κa > κb). Strong coupling as defined as g � κa, κb is
however not necessary. Once the squeezed driving field id
turned off, the lifetime of the atomic squeezing is of the or-
der of the lifetime of the atomic dipole in the cavity which
is short for an atomic transition. Strong EPR-type corre-
lations are found between the quadrature components of
the harmonic oscillator and the field. The considered two
level atom or harmonic oscillator is a model system that
has allowed us to highlight the main conditions for squeez-
ing transfer. Here the squeezing imprinted on the atoms
can only be tested indirectly through the measurements
on the outgoing field.

Atomic three level systems interacting with a squeezed
field and a coherent field have already been considered in
the case of single pass interaction. They allow independent
probing of long lived atomic coherences that are likely to
be squeezed [5]. It is possible to generalize our results to a
three level system interacting with two fields in a cavity.
This will be the subject of a forthcoming publication.
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